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SUMMARY

How innate lymphoid cells (ILCs) in the thymus and
gut become specialized effectors is unclear. The
prototypic innate-like gd T cells (Tgd17) are a major
source of interleukin-17 (IL-17). We demonstrate
that Tgd17 cells are programmed by a gene regula-
tory network consisting of a quartet of high-mobility
group (HMG) box transcription factors, SOX4,
SOX13, TCF1, and LEF1, and not by conventional
TCR signaling. SOX4 and SOX13 directly regulated
the two requisite Tgd17 cell-specific genes, Rorc
and Blk, whereas TCF1 and LEF1 countered the
SOX proteins and induced genes of alternate effector
subsets. The T cell lineage specification factor TCF1
was also indispensable for the generation of IL-22
producing gut NKp46+ ILCs and restrained cytokine
production by lymphoid tissue inducer-like effectors.
These results indicate that similar gene network
architecture programs innate sources of IL-17, inde-
pendent of anatomical origins.

INTRODUCTION

Innate lymphoid cells (ILCs) and innate-like T cells (ILTC)

producing interleukin-17 (IL-17) and IL-22 have emerged as the

central players in mucosal immunity (Spits and Di Santo, 2011).

Upon infection or alterations in cellular environments, ILCs lack-

ing clonal antigen receptors and T cells expressing gd TCR

rapidly produce effector cytokines and growth factors to

promote pathogen clearance and tissue repair (O’Brien et al.,

2009; Sonnenberg et al., 2011). gdTCR+ ILTCs, similar to adap-

tive ab CD4+ T cells, are segregated into effector subsets.

However, unlike ab T effectors, gdTCR+ effector subsets can

be classified by the germline-encoded TCR chains and they

are generated in the thymus (Jensen et al., 2008; Narayan

et al., 2012; Ribot et al., 2009). More than half of Vg2 TCR+

(designated as V2) gd T cells are intrathymically programmed
to produce IL-17 (Tgd17) and express RORgt (Rorc), the primary

transcription factor (TF) controlling IL-17 and IL-22 expression in

all lymphocytes (Ivanov et al., 2006). The emergent immature

(CD24hi) gd thymocyte subsets are further distinguished by TF

networks that may specify effector fates. Most of these,

including the high-mobility group (HMG) TFs SOX4 and

SOX13, are expressed highly only at the early effector program-

ming phase, their expression subsiding once effector capacity

has been established at the mature (CD24lo) stage. Whether

this ‘‘early’’ wave of TFs dominantly programs ILTC subset func-

tion was unknown.

In addition to Tgd17 ILTCs, there are at least four other RORgt+

ILTC and ILC subsets producing IL-17 and/or IL-22: abTCR+

invariant NKT (Rachitskaya et al., 2008), lymphoid tissue inducer

(LTi)-like (Sawa et al., 2010; Takatori et al., 2009), natural killer

(NK) cell receptor expressing IL-22 producer (NKp46+ NCR22;

Luci et al., 2009; Sanos et al., 2009; Satoh-Takayama et al.,

2008; Vonarbourg et al., 2010), and ILC17 cells (Buonocore

et al., 2010), with the latter three subsets primarily localized in

the gut associated lymphoid tissues (GALTs). How ILTCs and

ILCs are programmed toward distinct effectors is not well under-

stood. In particular, whether they share a unifying genetic blue-

print for differentiation distinct from that specifying adaptive

helper IL-17+ T helper 17 cells (Th17) is unknown. To answer

these questions, we determined the mechanism of innate

effector programming of Tgd17 cells and its possible involve-

ment in GALT ILC differentiation. We showed that the HMG TF

TCF1 and LEF1, and their interacting partners SOX4 and

SOX13, are expressed at particularly high amounts in the precur-

sors of Tgd17 cells (Narayan et al., 2012). HMGTFs are transcrip-

tion complex architectural proteins that bind to related

sequences in the minor groove of DNA, and their cell-type-

specific combinatorial clustering at target genes cooperatively

controls transcription (Badis et al., 2009). TCF1, the nuclear

effector of WNT signaling, is the best characterized HMG TF

and is critical for T cell lineage specification downstream of

Notch (Germar et al., 2011; Weber et al., 2011). We show here

that the HMG TFs, not conventional TCR signaling, programmed

IL-17 production in gd ILTCs. Moreover, TCF1 controlled cyto-

kine production in postnatal GALT ILCs and was absolutely
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Figure 1. SOX13 Is Essential for Tgd17 Generation

(A) Frequencies of activated and mature Vg2+ T cells in gdTCR+ cells in the spleen and thymus, respectively, of WT and Sox13�/� mice. Representative data

(numbers within the gates represent percents of total) from one experiment of at least four are shown. Similar results were obtained with T-Sox13�/�mice (B6).

(B) The defects in Tgd17 generation originate in the thymus. LN and thymic mature (CD24lo) Vg2+ cells from WT and Sox13�/� mice were analyzed for the

expression of RORgt and EOMES (an activator of Ifng transcription), cell surface CCR6 and CD27, and intracellular IL-17A and IFN-g in matV2 cells. Frequencies

less than 0.5% are left as blanks.

(C) Intracellular staining for IL-17 in splenic V2 cells isolated from mice 4 hr post-Zymosan administration.

(D) Left shows intracellular and nuclear staining for the twomarkers of Tgd17 cells, BLK and RORgt, in V2 thymocytes from neonatal mice at different maturational

stages. Right shows that staining of Abs to BLK and RORgt in CD4+ ab thymocytes was used as negative controls.
(legend continued on next page)
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required for NCR22 ILC generation. These results identify shared

gene network architecture centered on TCF1 underpinning IL-17

and IL-22 production by ILTCs and GALT ILCs.

RESULTS

To determine whether a common gene network controls innate

lymphoid effector differentiation, we first identified genes selec-

tively required to generate V2 Tgd17 cells. Emergent gd ILTC

subsets are marked with gene expression profiles predictive of

their eventual effector functions upon thymic egress (Narayan

et al., 2012). Hence, the gd T effector subtype-specific core TF

networks were candidates for specifying innate effector lineage

fate. Tgd17 precursors, immature V2 (immV2, CD24hi) thymo-

cytes, express genes encoding three HMG TFs, Sox4, Sox13,

and Tcf7 (encoding TCF1) at the highest amounts, whereas the

HMG TF Lef1 is expressed at similar amounts relative to other

gd cell subsets (Narayan et al., 2012). Aside from Lef1, the

HMG TF expression precedes that of TCR (Melichar et al.,

2007; Schilham et al., 1997; Verbeek et al., 1995; Weber et al.,

2011; www.immgen.org). To determine whether this expression

pattern programs Tgd17 cell differentiation and function, we

examined gd T cell subsets in Sox13�/� (Melichar et al., 2007),

Sox4-deficient, and Tcf7�/� (Verbeek et al., 1995) mice and

determined HMG TF chromatin occupancies in ex vivo Tgd17

precursors.

Sox13 Programs V2 Cell Tgd17 Differentiation
We found that Sox13-deficiency eliminated all V2 Tgd17 cells,

whereas other gd effector subsets were largely intact (Figure 1).

Sox13was identified as a gd T cell-specific TF that interacts with

TCF1 and LEF1 (Melichar et al., 2007), potentially modulating

their function. Whereas all immature gdTCR+ thymocytes

express Sox13, Tgd17 precursors express the protein at the

highest level (see Figure S1A available online), with its expres-

sion rapidly extinguished upon thymic maturation (Narayan

et al., 2012). Thus, all alterations in ILTCs associated with the

absence of SOX13 must originate in the precursors or at the

CD24hi stage. In Sox13�/� mice, the frequencies of CD44hi V2

cells were severely reduced in peripheral tissues, and CD24lo

mature (mat) V2 thymocytes were diminished to �50% of

the wild-type (WT) (Figures 1A; Figures S1B and S1C). The

numbers of other gd effectors were only marginally lower (Fig-

ure S1C; data not shown). Critically, the V2 cells that were

specifically absent in Sox13�/� mice were RORgt+CCR6+

CD27�CD44hiCD62L� Tgd17 cells (Narayan et al., 2012). Fetal

and adult RORgt+ matV2 thymocytes, the immediate precursors

of peripheral Tgd17 cells, were missing (Figure 1B; Figure S1D),

while the number of immV2 cells was not significantly altered.

The remaining V2 cells in Sox13�/� mice did not synthesize

IL-17 (or IL-17F, data not shown) ex vivo (Figure 1B), even after

stimulation with the TLR2 ligand, Zymosan (Figure 1C). These

results demonstrate that the high SOX13 expression in devel-
(E) SOX13 partly regulates RORgt expression in CD24hi immV2 thymocytes. A

Rorc-Gfp substrate introduced toSox13�/�mice and intranuclear RORgt protein e

are shown.

(F) Intracellular staining for BLK in two maturation stages of Vg2+ and Vg2� gd th

(G) Intracellular staining for IL-17A in Sox13 Tg+ LN gd T cells. See also Figure S
oping immV2 thymocytes is a critical factor in Tgd17 cell

differentiation.

The loss of V2 Tgd17 cells occurred in both the fetal and adult

Sox13�/� thymus. Fetal-derived Vg4+ (V4) gd T cells are the alter-

nate IL-17 producers (Shibata et al., 2008). Vg4 gene rearrange-

ments, which predominate in early fetal stages, precede that of

Vg2 and the fetal Vg4 chain is paired with the germline encoded

Vd1TCR. While V4 Tgd17 cells were negatively impacted in the

fetal thymus by the absence of SOX13, these effectors were

present in neonatal and adult Sox13�/� mice (Figures S1E–

S1G). This result suggests that despite the lineage and functional

relatedness (Narayan et al., 2012), developmental requirements

for V2 and V4 Tgd17 cells are distinct.

B lymphocyte kinase (BLK) is essential for Tgd17 development

(Laird et al., 2010). Ectopic Sox13 expression induces Blk

expression in ab thymocytes (Melichar et al., 2007) and among

gd T cells, BLK+ cells are the sole source of IL-17 during path-

ogen challenge (Laird et al., 2010; Narayan et al., 2012). In

Sox13�/� mice, V2 Tgd17 precursors (immV2 cells) expressing

normal amounts of BLK were depleted and the BLK and RORgt

coexpressors were specifically absent (Figure 1D). Analysis of

RorcGfp/+:Sox13�/�mice showed decreased, but still significant,

transcription of Rorc in the mutant immV2 cells (Figure 1E).

These results suggested that SOX13-regulated BLK expression

at the immature stage is critical for Tgd17 cell differentiation. In

support of this interpretation, transgenic (Tg) expression of

Sox13 in all developing gd cells (Melichar et al., 2007) increased

the proportions of BLK+ gdTCR+ cells, as well as the amount of

BLK expression per cell, independent of TCR repertoire (Fig-

ure 1F). Correspondingly, more gd T cells in peripheral tissues

produced IL-17 (Figure 1G). This enhancement was pronounced

for V4 gd T cells (Vg2�), whereas high ectopic Sox13 expression

was particularly detrimental for the survival of V2 cells that

express the highest endogenous amount of Sox13 (Melichar

et al., 2007), confounding their analysis in the gain-of-function

model system. The absence of V2 Tgd17 cells in Sox13�/�

mice and the increased IL-17 production from gd T cells by the

ectopic expression of SOX13 indicate that SOX13 is necessary

for programming IL-17 production in ILTCs.

Sox4 Regulates RORgt Expression and Is Necessary for
IL-17-Mediated Skin Inflammation
Thymic precursors lacking SOX4 also did not generate V2

Tgd17 ILTCs in vivo (Figure 2). SOX4 is expressed highly in T

and B cell precursors as well as in immature ab CD4+CD8+

double-positive (DP) and gd thymocyte subsets (www.immgen.

org). SOX4 is a transcriptional activator and was shown to also

physically interact with TCF1 and LEF1 (Sinner et al., 2007;

data not shown). We generated T-cell-specific Sox4-deficient

(T-Sox4�/�) mice to evaluate the function of SOX4 in ILTCs by

breeding CD2 promoter-driven Cre (CD2p-Cre) transgenic (Tg)

mice to Sox4fl/fl mice (Penzo-Méndez et al., 2007). Mature

adaptive ab thymocytes were generated in T-Sox4�/� mice.
decrease in Rorc transcription (top) as indicated by GFP expression from

xpression (bottom) is shown. Representative data from one of two experiments

ymocytes from LCKp-Sox13 Tg mice.

1.
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Figure 2. SOX4 Regulates RORgt Expres-

sion during Tgd17 Generation

(A) LN and mature thymic Vg2+ cells from WT

(CD2p-Cre:Sox4+/+) and T-Sox4�/� mice were

analyzed for the expression of RORgt, CCR6, and

CD27 and intracellular IL-17 and IFN-g. Repre-

sentative data from one of four experiments is

shown.

(B) SOX4 regulates RORgt expression in immV2

thymocytes. The loss of Rorc transcription (top)

as indicated by the loss of GFP expression

from Rorc-Gfp substrate introduced to T-Sox4�/�

mice and intranuclear RORgt protein expression

(bottom) is shown. Representative data from one

of three experiments are shown.

(C) Overlayed histograms of RORgt staining in ab

DP thymocytes in WT and T-Sox4�/� mice. The

shaded histogram is the internal negative control

for RORgt staining, gated on ab CD4+ thymocytes

that do not express Rorc.

(D) PASI scoring was used to quantify the

severity of psoriatic inflammation in IMQ treated

mice. See also Figure S2. Data is represented as

mean ± SEM.
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Strikingly, V2 Tgd17 ILTCswere not observed in T-Sox4�/�mice,

whereas other gd effector subsets were present (Figure 2A; data

not shown). As in Sox13�/� mice, the V2 cells that were com-

pletely lost in peripheral lymphoid tissues were RORgt+CCR6+

CD27�CD44hiCD62L� Tgd17 cells (Figures 2A and 2B). RORgt+

CCR6+CD27lo matV2 thymocytes were virtually undetectable in

fetal and adult T-Sox4�/� mice (Figure 2A; data not shown),

whereas immV2 cells were present in normal proportions (Fig-

ure S2A) and did not exhibit decreased rates of survival or prolif-

eration (Figure S2B). Accordingly, the remaining differentiated V2

cells in T-Sox4�/�mice did not produce IL-17 ex vivo (Figure 2A).

The block in Tgd17 cells correlated with a loss of Rorc transcrip-

tion (based on RorcGfp/+:T-Sox4�/� mice) and RORgt protein

expression beginning in immV2 thymocytes (Figure 2B; Fig-

ure S2C). This loss was nearly absolute, more severe than the

decrease observed in Sox13�/� mice (Figure 1E). In contrast,

RORgt expression in ab DP thymocytes was unaffected by the

loss of SOX4 (Figure 2C), indicating that SOX4 is a gd ILTC-

specific modulator of RORgt expression.

Tgd17 cells have been implicated in the dermal inflammation-

driven psoriasis-like disease in mice (Cai et al., 2011;

Pantelyushin et al., 2012). The disease can be induced by the

application of the TLR7 ligand Imiquimod (IMQ) to skin. Tgd17

cells residing in the dermis have been shown to be the primary

lymphoid responders responsible for the disease. To determine

whether SOX4 is necessary to generate pathogenic dermal

Tgd17 cells, we first assessed the distribution of gd T cell subsets

in the dermis of T-Sox4�/�mice. V2, but not V4, Tgd17 cells were

greatly reduced in T-Sox4�/� dermal tissues before treatment

(Figures S2D and S2E). After topical application of IMQ for

5 days, we observed significant thickening, scaling, and

erythema in WT mice. However, T-Sox4�/�mice did not show

overt inflammation (Figures S2F and S2G), which was quantified

by the adapted Psoriasis Area and Severity Index (PASI) scoring

system (Figure 2D). The lack of inflammation was correlated with

significantly decreased proportions of V2 Tgd17 cells (Figures
684 Immunity 38, 681–693, April 18, 2013 ª2013 Elsevier Inc.
S2D and S2E) and CD11b+Gr-1+ neutrophils (Figure S2H) in

the treated T-Sox4�/�dermis.

Unlike the dermis, V2 Tgd17 cells were a minor population

relative to Vd1+IL-17+ V4 cells in skin draining LNs of resting

WT mice (Figures S2I and S2J). Vd1+IL-17+ V4 cells were

decreased in number in the fetal T-Sox4�/� thymus (�30% of

the WT number), and reduced but substantial numbers of these

fetal-derived effectors were found in adult T-Sox4�/� thymus

and lymph nodes (LNs, Figure S2I; data not shown). V4 LN

T cells responded to IMQ, as indicated by an increase in the

proportion of IL-17 producers (Figure S2I). However, this

response, and the persistence of dermal V4 cells in T-Sox4�/�

mice (Figures S2D and S2E), was insufficient to precipitate the

fulminant inflammatory condition in the skin. In conjunction

with previously published reports (Cai et al., 2011; Pantelyushin

et al., 2012), these results indicate that SOX4-dependent V2

Tgd17 cells are the primary ILTCs mediating IMQ-mediated

skin inflammation. In addition, the results showed that fetal-

derived V4 Tgd17 cells, while acutely dependent on SOX13

during gestation, have compensatory mechanisms to bypass

the SOX4 requirement and replenish their numbers in peripheral

tissues in the absence of either TFs. In contrast, the ‘‘late’’ V2

Tgd17 cells are not produced in the absence of Sox4 or Sox13,

reinforcing the conclusion that these two ILTC subsets are

generated under distinct conditions and are not functionally

interchangeable.

TCF1 Restrains IL-17+ Cell Generation
Tcf7 is turned on by Notch signaling to specify the T cell fate

(Germar et al., 2011; Weber et al., 2011). Notch signaling also

controls GALT ILC differentiation (Lee et al., 2012; Possot

et al., 2011), raising the possibility that TCF1 is the core regulator

of innate effector differentiation. In the absence of TCF1, devel-

opment of thymic precursors and ab T cells is aberrant (Verbeek

et al., 1995). Although the total gd thymocyte number is not

significantly decreased in young Tcf7�/� mice (Verbeek et al.,



26 

WT
KO

TCRd

42

47

29

28

63

4 

3 

19

31 2

7

5

80

WT WT Tcf7-/-Tcf7-/-

46 2 

1537

81 2

314

9

9 

49 61

4

97

LN

LEF1

WT Tcf7-/-

50

47

45

31

88

5

C

9

89

V 1.1+ V 2+
A

V 1.1+

V 2+

B D

WT Tcf7-/- CD24hi CD24lo

83 
7

WT
KO

LEF1

V 2+ V 2+

R
O

R
t

Eomes

C
C

R
6

CD27

IL
-1

7

CD27

R
O

R
t

(CD24lo)Thymus

Thymus(CD24hi)Thymus

IFN

95 40

Figure 3. TCF1 Constrains Tgd17 Generation

(A) Deregulated IL-17 production in Tcf7�/� mice. Differentiation of Tgd17

thymocytes was examined by analyses of RORgt and EOMES, CCR6 and

CD27, and intracellular IL-17A and IFN-g expression in mature (CD24lo) Vg1.1+

and Vg2+ gd T cells. Similar results were obtained when peripheral gd T cell

subsets were analyzed. Representative profiles from one of at least five

independent experiments, each with minimum of three mice per genotype, are

shown.

(B) Expression of CD27 expression on Tcf7�/� immV2 thymocytes. A similar

trend for increased ratio of CCR6/CD27 was observed with other gd thymic

subtypes.

(C) Intranuclear staining for RORgt and LEF1 in LN Vg1.1+ (top) and Vg2+

(bottom) T cells from WT and Tcf7�/� mice shows mutually exclusive

expression of the TFs and the loss of LEF1+ gd T cells when TCF1 is

nonfunctional. TCF1 expression, although biased, is not starkly separated

fromRORgt expressors in any gd T cell subsets. Staining controls are shown in

Figure S3E.

(D) Intranuclear staining for LEF1 in immature (CD24hi) and mature (CD24lo)

Vg2+ thymocytes from WT and Tcf7�/� mice. See also Figure S3.
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1995), we found that the effector programs of gd ILTCs were

extensively distorted (Figures S3A and S3B). In particular, thymic

and peripheral V2 cells exhibited skewed ratios of CCR6+

(marking Tgd17 cells) to CD27+ (IFN-g producers, [Ribot et al.,

2009]) populations, with the latter subset being undetectable in

some Tcf7�/� mice (Figure 3A). More than 80% of Tcf7�/� V2

cells produced IL-17, twice the frequency observed in WT V2

cells, and they were uniformly RORgt+ (Figure 3A). The bias

toward IL-17 production was not V2 cell-specific because the

number of thymicmature Vg1.1+ (normally IFN-g+) cells express-

ing IL-17 was also increased by >10-fold (Figure S3C). This

pattern was not observed in Tcrb�/� mice (N.M., data not

shown), indicating that the deregulated effector programming

is not simply a consequence of the decreased production of

ab thymocytes in Tcf7�/� mice.

In all thymic gd subtypes, the decreased expression of CD27

was already evident at the immature stage (Figure 3B). This

pattern, along with a relatively normal cell-cycle status of

Tcf7�/� gd thymocytes (Figure S3D), suggested that the

proclivity of TCF1-deficient gd ILTCs toward the IL-17 effector

fate is an early developmental event, not a consequence of

altered maintenance of mature effectors. This interpretation

was further supported by the LEF1 expression pattern. LEF1

was a discriminatory regulator of gd effectors, as evidenced by

its mutually exclusive expression to RORgt in gd thymocytes

(Figure 3C; Figure 3E) and the partial and complete loss of

LEF1+ subsets in Vg1.1+ and V2 cells, respectively, when TCF1

was absent (Figures 3C and 3D), again starting at the immature

stage of differentiation (Figure 3D). Lef1 expression is primarily

controlled by TCF1 (Driskell et al., 2007). Given the precedent

that some TCF1 target gene expression can be inhibited by

SOX13 (Marfil et al., 2010; Melichar et al., 2007), high amounts

of SOX13 in immV2 thymocytes may interfere with TCF1-medi-

ated induction of Lef1. Consistent with this, immature gdTCR+

thymocytes from Sox13Tg mice expressed significantly lower

amounts of LEF1 and CD27 (Figure S3F). Taken together,

TCF1 is necessary for pan-gd T cell development (Figures S3G

and S3H), and it programs gd T effector subset differentiation,

promoting and inhibiting IFN-g and IL-17 production, respec-

tively, whereas SOX4 and SOX13 have the opposite function.

HMG TF Chromatin Occupancy
Fetal and adult immV2 thymocytes share the TF transcriptome

(Figures S4A and S4B). To determine whether HMG TFs directly

regulate the Tgd17 gene network, we examined their chromatin

occupancies at three gene loci (Blk, Rorc, and Il17a) that are

the hallmarks of Tgd17 cells, along with the ubiquitously active

Gata3 locus as a control, in ex vivo immature Vg2+ and Vg2�

thymocytes. First, we established epigenetic chromatin modifi-

cations of the gene loci. For comparison, in vitro differentiated

adaptive Th1 and Th17 ab T cells were examined. Among gd

T cell subsets, Blk and Rorc are most abundantly expressed in

V2 cells (Narayan et al., 2012). Accordingly, the Blk and Rorc

loci were selectively enriched for active H3K4me3 (and acety-

lated H3, data not shown) modifications in immVg2+ cells.

Conversely, the Rorc locus was repressed in immVg2� cells as

indicated by H3K27me3 markings (Figure S4C). In contrast,

Il17a was decorated exclusively with repressive H3K27me3

chromatin marks in the immature gd thymocytes, consistent
Immunity 38, 681–693, April 18, 2013 ª2013 Elsevier Inc. 685



Figure 4. ChIP Assay for TF Binding near the Transcriptional Regulatory Sites of Rorc, Blk, il17a, and Gata3 Loci

Immature Vg2+ and Vg2� thymocytes, the immediate precursors ofmature thymic effectors, were compared to in vitro differentiated control Th1 and Th17CD4 ab

T cells. Analysis of mature gd thymocytes was not possible due to their low numbers in mice. Graphs show quantitative PCR detection for relative enrichment of

target DNA sequences from ChIP using Abs to indicated TF and control IgG (Figure S4). The regions examined are described in Figure S4 legend. Quantitative

real-time PCR data are plotted as average percentage (%) of input ± SD from two independent experiments. Binding of the TFs to TCF consensus sequences at

the control MyoG promoter was undetectable in T cells (data not shown). See also Figure S4.
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with its restricted expression in mature gd thymocytes (Narayan

et al., 2012). These results indicate that the distinct effector gene

expression profiles of immature gd cell subsets are foremost

regulated at the chromatin level.

Next, we determined HMG TF occupancy of Blk, Rorc, and

Il17a loci. SOX13 was localized to the Blk and Rorc loci in imma-

ture Vg2+, but not Vg2�, thymocytes (Figure 4). The low signals in

Vg2- thymocytes can be accounted for by low SOX13 protein
686 Immunity 38, 681–693, April 18, 2013 ª2013 Elsevier Inc.
expression in the cells (Figure S1A). Although SOX4 was

detected at all four loci assessed in gd thymocytes, only the

docking at the Rorc loci was conserved in ab Th17 cells. More-

over, SOX4 was particularly enriched at the Region 2 (R2) near

the transcription start site dedicated for RORgt production in

Vg2+ thymocytes (Ruan et al., 2011). These results supported

the above finding (Figure 2) that SOX4 is an essential regulator

of Rorc expression in Tgd17 cells.
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TCF1 was enriched at the Blk and Rorc loci in immature

Vg2+ cells, but not in immature Vg2� cells. TCF1 and LEF1

occupancy at the Il17a locus exhibited distinct modality with

TCF1 preferentially enriched at the intronic R2, previously

shown to be a docking region in ab T cells (Yu et al., 2011),

in both thymic subsets and LEF1 at the promoter upstream

R1, particularly in immature Vg2� thymocytes. Consistent

with the TCF1 chromatin occupancy in precursor cells (Weber

et al., 2011), TCF1 was found docked onto the Gata3 locus in

gd thymocyte subsets, but LEF1 was not. LEF1 was associated

with the Blk locus in Vg2+ thymocytes, presumably in the

RORgt� fraction, based on the mutually exclusive expression

of RORgt and LEF1 in V2 thymocytes (Figure 3C). That LEF1

docking at the Blk locus is neutral to suppressive for transcrip-

tion is supported by a selective enrichment at the locus in ab

Th17 cells that do not express Blk. As expected, LEF1 was

excluded from the Rorc locus in Vg2+ thymocytes. Integrated

with the results from the genetic studies, these results indicate

that the HMG TFs are direct transcriptional regulators of the

Tgd17 genes. SOX13 and SOX4 cooperatively orchestrate

Tgd17 differentiation by primarily controlling Blk and Rorc tran-

scription, respectively. TCF1, implicated as a negative regu-

lator of Tgd17 cells, was associated with all the loci examined.

Its docking at the Rorc and Blk loci was Vg2+ cell-type-

specific, a pattern overlapping with SOX13 and SOX4, and

raises the likelihood that a combinatorial assortment of HMG

TFs at each target gene locus is directly controlling ILTC

effector fate specification.

Conventional TCR Signaling Alone Cannot Specify
Tgd17 Fate
A potential mechanistic explanation for the distinct global gene

expression profiles of immature gd effector subsets is that

different gTCR chains (for example, Vg1.1/Vg5 versus Vg2/

Vg4) convey different signals to establish diverse differentiation

programs. For extrathymic adaptive Th17 cell differentiation,

TCR signaling-induced IRF4 (Brüstle et al., 2007) and ITK-

NFAT (Gomez-Rodriguez et al., 2009) are critical regulators of

Rorc and Il17a expression, respectively. IRF4 is dispensable

for Tgd17 cell differentiation (Powolny-Budnicka et al., 2011).

The role of ITK in Tgd17 differentiation was unknown. Peripheral

Itk�/� gd T cells were impaired in their Ca2+ response when they

were activated via TCR stimulation in vitro (Figure S5A), estab-

lishing ITK as a key signal integrator of gdTCR signaling. In the

absence of ITK, the transcriptomes of immV2 thymocytes

converged with other gd cell subsets, as indicated by principal

component analysis (PCA, Figure 5A) that clusters related popu-

lations based on the major components of gene expression vari-

ability. ITK signaling was responsible for �90% of the unique

immV2 thymocyte transcriptome (Figure S5B). However, the

characteristic TF profile of immV2 cells was mostly insulated

from change when ITK was absent, as shown by hierarchical

clustering (Figure 5B), correlating with the relatively normal

generation of Tgd17 cells in Itk�/� mice (Figure S5C). These

results demonstrate that while Vg2TCR-ITK signaling is central

to the establishment of distinct transcriptomes of gd subsets it

is not responsible for the wiring of gd effector subset-specific

TF networks at the immature stage. Together, these results

indicate that the conventional TCR signaling pathways so far
implicated in adaptive Th17 differentiation do not dominantly

specify the Tgd17 cell fate.

To directly assess the role of the gdTCR in Tgd17 cell differen-

tiation, gd T effector development was tracked in Vg2 TCR Tg

mice where nearly all gd T cells express the identical Vg2 TCR

chain (Kang et al., 1998). Vg2 TCR Tg expression on the cell

surface is controlled by endogenous TCRd-chain gene rear-

rangement and expression. If the TCR is deterministic for

effector fate, expression of a functional Vg2+ TCR in all gd

T cells should enhance the generation of Tgd17 cells. The Tg

mice, however, did not produce a significantly enhanced number

of IL-17+ gd cells, nor could the Tcrg Tg expression in Sox13�/�

mice rescue the Tgd17 differentiation defect (Figure 5C). These

results indicated that specific Vg2 TCR signaling per se is not

the dominant determinant of effector lineage specification.

If the TCR signaling alone cannot specify ILTC effector fates,

an alternate possibility was that distinct effector programs are

preset at different developmental stages. To test whether T cell

developmental intermediates possess unique effector genera-

tive capacity, we compared the ability of the early c-Kit

(CD117)+ T progenitors (ETP) versus the late c-Kitneg DN3

precursors to generate Tgd17 effectors. ETPs (fetal and adult)

generated CCR6+CD27� Tgd17 V2 cells in the standard

OP9-DL1 culture system (Figure 5D). However, no significant

generation of CCR6+CD27� V2 cells was detectable from DN3

precursors. Further, the late precursors were markedly biased

to produce V1 and V2 CD27+ gd cells (Figure S5D; data not

shown). Together, these findings suggest that the maturational

state of the precursors, and not TCR signaling alone, is a key

determinant of Tgd17 effector lineage specification.

TCF1 Is Necessary for GALT ILC Differentiation
One implication of the dominance of the HMGTF network in ILTC

effector differentiation was that a similar regulatory gene network

may operate to generate GALT ILCs that lack clonal antigen

receptors. GALT ILCs express several HMG TFs at the

messenger RNA level. These include Tcf7, Sox4, and Tox (Aliah-

mad et al., 2010), though not Sox13 (Reynders et al., 2011; data

not shown). To determine whether HMG TF networks control

innate effector differentiation extrathymically, we first estab-

lished the ILC subset-specific expression pattern of TCF1 and

LEF1 proteins andAxin2, a canonical TCF1-WNT signaling target

that can serve as a reporter of TCF1 as a transcriptional activator

(Lustig et al., 2002). In mLN and splenic CD3�CD19� cells, TCF1

was expressed highly in IL-7R+ subsets, with all IL-7RhiRORgt+

LTi-like ILCs uniformly positive. The majority of mLN IL-7R+

NKp46+ NCR22 cells also expressed TCF1 (Figures 6A and 6B;

Figure S6A), whereas <10% of the RORgt�IL-7R� was TCF1+.

Expression of TCF1 and CD4, a classic marker of LTi cells,

was mostly concordant, with only some CD4+IL-7Rlo-neg cells

lacking TCF1. LEF1, coexpressed with TCF1 in adaptive

T cells, was not expressed in LTi-like or NCR22 ILCs (Figure 6A),

paralleling its exclusion from gd thymocytes fated for IL-17

production (Figure 3C). Similar results were obtained with

neonatal intestinal lamina propria (LP) ILC subsets (data not

shown). Axin2 was variably expressed in TCF1+ ILC subsets,

with LTi-like ILCs (c-Kit+IL-7R+Lin�, a4b7+/�, >50% Axin2+)

considerably enriched for WNT signaling activity than in

NCR22 ILCs (�10% Axin2+) (Figure S6B). These results indicate
Immunity 38, 681–693, April 18, 2013 ª2013 Elsevier Inc. 687
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that although TCF1 is expressed in most, but not all ILCs, it is

likely to have broad activities beyond that of the canonical

WNT signaling transcriptional activator.

To determine the range of TCF1 function, ILC subset compo-

sition, and function in the small intestine, mLN and spleen of

Tcf7�/� mice were examined. In Tcf7�/� neonatal intestines

and spleens, NKp46+IL-7R+ NCR22 ILCs were specifically

absent, whereas CD4+ LTi-like ILCs were overrepresented pro-

portionally, but only marginally increased in numbers (Figure 6C;

data not shown). LTi-like ILCs are CCR6+CD25+ (Sawa et al.,

2010; Vonarbourg et al., 2010) and the frequency of the CCR6+

fraction was elevated, a trend that was already evident in

Tcf7+/� heterozygotes (Figure 6D). However, Tcf7�/� LTi-like

ILCs lost CD25 expression, most likely indicating that as in

T cell precursors (Weber et al., 2011), TCF1 may be a positive

regulator of Cd25 transcription in ILCs.

In 3- to 4-week-old Tcf7�/� mice, the number of RORgt+ ILCs

was reduced to one third of normal in the mLN, whereas IL-7R+

CD3�CD19�RORgtneg-lo fraction was decreased to 10% of

normal (Figure 6E). As in neonates, NKp46+ ILCs were specifi-

cally depleted (Figures 6E and 6F; Figure S6C). These results

show that TCF1 is absolutely required for NCR22 cell generation,

whereas LTi-like ILC production per se appears less dependent

on TCF1. During Tgd17 differentiation, TCF1 dampened effector

capacity (Figure 3). To determine whether TCF1 functions simi-

larly in differentiated ILCs, we assessed the effector capacity

of Tcf7�/� ILCs. All RORgt+ ILCs in Tcf7�/� mice expressed

higher amounts of RORgt per cell (Figure 6G) and were capable

of enhanced IL-17 production (Figure 6H, top row). Upon activa-

tion with TLR2 agonist Zymosan, IL-17 and IL-22 production

from Tcf7�/� LTi-like ILCs was significantly elevated (Figure 6H;

Figure S6C). Thus, as in gd ILTC development, TCF1 has a dual

function in ILC development, coordinating normal gene induc-

tion to ensure proper differentiation of ILC subsets and control-

ling effector function by restraining RORgt expression and

IL-17 and IL-22 production.

DISCUSSION

We showed that dermal SOX13 and SOX4-dependent V2 Tgd17

cells are the primary innate lymphoid mediators of psoriasis-like

disease in C57BL/6 mice and they develop in the thymus under

the control of a HMG TF regulatory network. Adaptive Th17 cell

differentiation in peripheral tissues requires TCR signaling and its

downstream targets ITK (Gomez-Rodriguez et al., 2009) and
(A) PCA of the discriminatory gene signature of Itk�/� immV2 cells. PCA of the 15%

labels indicate population; MEV > 120 in at least one population; 1,433 genes)

proportion of the total variability represented by each component (in parenthese

(B) A heat map of relative gene expression of TFs in immature gd subsets fromWT

gene and subset. Genes are color coded (see legend) to display relative gene ex

(C) LN cells fromWT and Tcrgv2 transgenic mice (with and without normal Sox13)

were analyzed for the expression of Vg2 in gd T cells (top) or intracellular IL-17A in

shown, each with a minimum of three/group. Similar results were observed with

(D) gd T cell progenies of c-Kithi ETPs and c-Kit� DN3 (CD25+CD44�CD3�CD4�

CCR6 and CD27 expression. Representative FACS plots of V2 cells (top) and a s

Tgd17 cells generated from ETPs (103 cells per well) or DN3 (53 103 cells per well

per well. Average cell numbers obtained from DN1 or DN3 were 3.53 105 or 4.63

independent experiments, ETP n = 18; DN3 n = 38. See also Figure S5.
IRF4 (Brüstle et al., 2007), the inflammatory cytokine IL-6 and

its signal mediator STAT3 (Zhou et al., 2007), as well as TGF-

b-activated SMAD2 (Malhotra et al., 2010). None of these factors

are essential for Tgd17 ILTC development in the thymus (Lochner

et al., 2008; Malhotra et al., 2010; Powolny-Budnicka et al.,

2011). Instead, a complex network of HMG TFs cooperatively

controls thymic ILTC differentiation by direct regulation of key

genes involved in effector function. Among them, SOX4 and

SOX13 are the central positive regulators of Tgd17 differentia-

tion, by primarily inducing RORgt and BLK, respectively, and

potentially localizing their interacting partner TCF1 to select

chromatin sites. Given that HMG TFs operate in conjunction

with cofactors, a detailed understanding of target gene-specific

function of SOX4 and SOX13 awaits the full characterization of

transcriptional complexes assembled by each factor.

During early fetal dendritic epidermal gd T cell (Vg3+) differen-

tiation, cell surface SKINT signaling normally suppresses Rorc

and Sox13 expression to block IL-17 production (Turchinovich

and Hayday, 2011), underscoring the importance of SOX13 in

positively enforcing the IL-17 effector fate that must be circum-

vented to generate alternate innate effector cells in the fetus.

SOX13 regulates several key factors of V2 Tgd17 cell differenti-

ation, including Blk, Rorc, and Etv5 (K.E.S., data not shown).

The exclusion of LEF1 from developing Tgd17 cells is also likely

to be established by SOX13, as suggested by the diminished

Lef1 expression in Sox13Tg mice. Although published studies

to date support protein-protein interactions as the main regula-

tory mode of SOX13-TCF1 functions, it remains possible that

each can impact chromatin occupancy of the other. For

instance, the loss of TCF1 may result in more precursors

with SOX13 bound to the Rorc locus, thereby leading to the

enhanced generation of Tgd17 cells. However, Tcf7�/� gd cells

do not express LEF1, and the loss of LEF1-dependent effector

developmental potential may also indirectly enhance Tgd17

cell production. A systemic approach that can simultaneously

track all relevant HMG TFs during Tgd17 differentiation from

thymic precursors will be necessary to define the rules governing

functional connectivities of HMG TFs.

Themechanism by which the temporally disparate emergence

of gd effector subtypes is linked to specific TCRg and d repertoire

remains to be determined. We have identified ITK as a discrimi-

natory signal mediator of TCR that is required for the molecular

divergence of V2 cells from other gd cell subsets. Previously, it

has been shown that some IL-17+ Vg2+ T cells can be generated

in the absence of ligand recognition, whereas TCR triggering led
most variable genes among the populations of cells shown (colors of bars and

. The first three principal components (PC1–PC3) are shown, along with the

s along axes).

and Itk�/�mice. Data were gene row normalized and hierarchically clustered by

pression.

that express a functional Vg2-Jg1-Cg1 (Tcr Vg2 Tg) chain in nearly all gd T cells

Vg2+ T cells (bottom). Representative profiles from one of two experiments are

thymocytes.

CD8�) precursors cultured on OP9-DL1 stromal monolayers were assayed for

ummary of the frequencies (bottom, Student t test p values) of CCR6+CD27�

) precursors are shown. Similar results were obtained with varying cell numbers

104 per well, respectively. V1/V6 = Vg1.1+ cells. Data are combined from three
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(A) TCF1/LEF1 expression in CD3�CD19� mLN ILCs of adult mice. ILCs were segregated based on RORgt and IL-7R expression. CD4, NKp46,

intranuclear TCF1, and LEF1 expression was assessed on the three indicated subsets. Data shown are representative profiles from one of three independent

studies.
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to the capacity to produce IFN-g (Jensen et al., 2008). In vitro

assays, however, showed that the cell surface expression of

Vg2TCR itself is uniquely able to trigger signaling, akin to the

pre-TCR signaling that generates ab DP cells. Given the

substantial, but constrained, alterations of V2 cells in Itk�/�

mice, we propose that the Vg2TCR-ITK signaling constitutes

a developmental checkpoint related to the b selection for ab

thymocytes but that this tonic signaling alone does not regulate

the TF transcriptome that programs the Tgd17 effectors.

Published data (Jensen et al., 2008; Ribot et al., 2009; Turch-

inovich and Hayday, 2011) and our results from the in vitro

cultures and TCRg Tg mice indicate at least two other factors

that can contribute to the observed correlation between TCR

repertoire and effector function: developmental timing and

limiting permissive niches. In the OP9 culture system, DN3 cells

and their progenies cannot generate Tgd17 cells, indicating

a developmental stage-specific gene program, perhaps linked

to an ordered Tcrgv gene rearrangement process. However,

the enforced expression of Vg2TCR does not enhance the

number of Tgd17 cells generated in vivo, indicating that

Vg2TCR-specific signals alone cannot dictate effector fate and

that there exists a limit to the number of Tgd17 cells that can

be produced regardless of the TCR repertoire.

Recently, it has been concluded that most Tgd17 cells are

generated during gestation (Haas et al., 2012). Although this

can account for the correlation for V4 cells, whether V2 Tgd17

cells also originate exclusively during gestation remains to be

clarified. The requirements for SOX4 and SOX13 in the genera-

tion of V2 and V4 Tgd17 cells are distinct, with V2 Tgd17 cells

showing an absolute dependence, whereas V4 Tgd17 cells are

mostly dependent on SOX13, but even here only the fetal thymic

cellularity was significantly impacted by the loss of Sox13. These

distinct developmental requirements between V2 and V4 cells

are observed despite their overall molecular similarity at the

gene expression level (Narayan et al., 2012), suggesting T cell-

extrinsic environmental signals differentially affecting the early

(Vg4+) versus late (Vg2+) Tgd17 cell development.

The high Tcf7 expression is a unifying feature of developing

thymocytes and GALT ILCs. Notch signaling has been shown

to directly induce Tcf7 transcription (Germar et al., 2011; Weber

et al., 2011). On the basis of the known targets of TCF1 in T cells

and their precursors, TCF1 may directly regulate the expression

of several markers of GALT ILCs, including Id2 (Germar et al.,

2011; Rockman et al., 2001), Il7r (Germar et al., 2011), Cd4

(Huang et al., 2006), and Cd25 (Weber et al., 2011). For ILCs,

Tcf7-deficiency led to the selective loss of NCR22 cells that
(B) TCF1 expression in CD3�CD19�CD11b� mLN ILCs segregated based on NK

(C) TCF1 is required for the development of NCR22 cells. Intestinal LP and spleni

NKp46 to track NCR22 cells. Data shown are representative profiles from one o

(D) Frequencies of CCR6+ and CD25+ in neonatal LP ILCs from Tcf7+/� heteroz

p values are shown. Similar results were observed in mLN.

(E) Numerical reduction in the ILC subsets in the mLN of 3-week-old Tcf7�/� mice

and Nkp46� RORgtlo ILCs is shown. Data are combined from two experiments,

(F) Representative histograms showing the frequency of NCR22 cells in the mLN

(G) Increased expression of RORgt in Tcf7�/� ILCs. Averages of MFI (±SEM) of RO

one representative experiment of four).

(H) TCF1 restrains IL-17 and IL-22 production in the ILCs. Intracellular staining for I

perfomed post-Zymosan administration. Unlike in other tissues, the number of

shown were obtained in two additional experiments. See also Figure S6.
have been shown to be most dependent on Notch signaling for

development (Lee et al., 2012). Other RORgt+ ILCs are mostly

spared, although their functional profiles are altered when

TCF1 is absent, as evidenced by the hyper production of cyto-

kines, reminiscent of Tcf7�/� gd ILTCs. Thus, TCF1 is a negative

regulator of IL-17 and IL-22 production in differentiated innate

lymphoid effectors. An analogous (Yu et al., 2011) or distinct

(Muranski et al., 2011) function of TCF1 in adaptive T cells has

been proposed, but in vivo, TCF1 may primarily impact Th17

cell survival or renewal. This difference in the repertoire of

TCF1 function in innate versus adaptive lymphocytes is likely

linked to the dominance of TCR and cytokine receptor signaling

in specifying adaptive effector differentiation, whereas the

production of fast-acting innate lymphoid effectors is acutely

dependent on intrinsic gene networks programmed in the

tissues of origin. TCF1may also be required for fetal LTi develop-

ment as Tcf7�/� mice do not generate Peyer’s patches (N.M.

data not shown), similar to mice lacking the HMG TF Tox (Aliah-

mad et al., 2010). Together, these results suggest that the diver-

sity of RORgt+ innate lymphoid subsets can be generated by

unique combinatorial usage of HMG TFs in precursors arising

in distinct tissues.

EXPERIMENTAL PROCEDURES

Mice

Sox13�/� (129/J), Sox13 Tg (Melichar et al., 2007), TcrVg2 Tg (C57BL/6) (Kang

et al., 1998), Axin2lz/+ (H. Birchmeier, MDC Berlin), Tcrb�/�, Rorc-Gfp (JAX),

Itk�/� (Felices et al., 2009), and Tcf7�/� mice (Verbeek et al., 1995) were previ-

ously described. Sox4fl/fl mice were generated by V. Lefebvre (Penzo-Méndez

et al., 2007) and crossed to CD2p-CreTg mice. All mice were housed in a

specific pathogen-free barrier facility and experiments performed were

approved by the IACUC.

Flow Cytometry

Antibodies (Abs) used are detailed in Supplemental Information. Data was

acquired on a BD LSRII cytometer and was analyzed by using FlowJo

(Treestar).

Ex Vivo Stimulation, Zymosan Activation, and OP9 Culture

Freshly isolated thymic and LN cells were cultured (2 3 106/well) with PMA

(10 ng/ml) and Ionomycin (1 mg/ml) for 4 hr at 37�C, with Golgi Stop and Golgi

Plug (BD Biosciences) added after 1 hr. After stimulation, cells were stained for

cell surfacemarkers and intracellular cytokine production by using the Cytofix/

Cytoperm kit (BD Biosciences). To activate innate effectors, we injected mice

intraperitoneally with Zymosan (Sigma) in PBS (6 mg/mouse). Four hrs postin-

jection, lymphocytes were isolated from the mLN and spleens. Cells were

stimulated with PMA/Iono and intracellular staining for IL-22 and IL-17 in gd

ILTCs and ILCs was performed. Intestinal LP lymphocytes from 10-day-old
p46 and IL-7R was analyzed.

c ILCs (CD3�CD19�IL-7R+) from Tcf7�/� neonates were stained with CD4 and

f four studies.

ygotes (HET) and Tcf7�/� mice. Lines represent the mean, and Student t test

. The total cell number of IL-7R+ ILCs, RORgthi and RORgtlo ILCs, and Nkp46+

n = 5/group. Data are represented as mean ± SEM.

s of 3-week-old Tcf7�/� mice.

Rgt expression in the CD3�CD19�IL-7Rhi spleen cells is provided (n = 5/group;

L-17 and IL-22 in the ex vivo splenic ILCs (CD3�CD19�IL-7RhiCD4+CD25+) was

splenic RORgt+ ILCs was marginally increased in adult Tcf7�/� mice. Profiles
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mice were isolated as described (Qiu et al., 2012). Sorted fetal and adult

ETPs (c-Kit+CD4�CD8�CD3�CD25�CD44+) or c-Kit� DN3 (CD4�CD8�CD3�

CD25+CD44�) cells were plated onto OP9-DL1 monolayers (J. C. Zuniga-

Pflucker) at various concentrations in aMEM media containing 20% FBS

(GIBCO), 1 ng/ml IL-7 (R&D Systems), and 5 ng/ml Flt3L (R&D Systems). After

5–12 days of culture, cells were analyzed by flow cytometry.

Psoriasis Induction

Aldara (5% Imiquimod, 3M Pharmaceuticals) or control vehicle cream was

applied daily for five days on the back and ear. The disease severity in mice

was scored by amodified PASI normally used to rank human psoriasis severity

(Fredriksson and Pettersson, 1978). The scale thickness and erythema were

scored from 0 to 4 (slight, moderate, severe, very severe), and the total area

of the inflammation covering the back was scored from 0 to 6 (0%, 10%–

29%, 30%–49%, 50%–69%, 70%–89%, 90%–100%). The scores for the

scales and erythema were added and multiplied by the score for the body

area to obtain the total score ranging from 0 (no disease) to 48. Dermal cells

were obtained according to a published protocol (Suffia et al., 2005).

Microarray Analysis

Samples were processed and analyzed according to the standard operating

protocol of the Immunological Genome Project (www.immgen.org; Supple-

mental Information); GEO:GSE15907.

Chromatin Immunoprecipitation Assay

Sorted immature Vg2+ and Vg2� thymocyte subsets were used to determine

HMG TF chromatin occupancy at the Blk, Rorc, Il17a, and Gata3 loci using

commercially available Abs, reagents, and kits. In vitro differentiated Th1

and Th17 cells were used as controls. Detailed method is provided in Supple-

mental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, one table, and Supplemental

Experimental Procedures and can be found with this article online at http://
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